1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/*
 * Copyright (C) 2015 Benjamin Fry <benjaminfry@me.com>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//! hashed negative cache proof for non-existence

use std::collections::{HashMap};

use ::serialize::binary::*;
use ::error::*;
use ::rr::RecordType;
use ::rr::dnssec::Nsec3HashAlgorithm;

/// [RFC 5155, NSEC3, March 2008](https://tools.ietf.org/html/rfc5155#section-3)
///
/// ```text
/// 3.  The NSEC3 Resource Record
///
///    The NSEC3 Resource Record (RR) provides authenticated denial of
///    existence for DNS Resource Record Sets.
///
///    The NSEC3 RR lists RR types present at the original owner name of the
///    NSEC3 RR.  It includes the next hashed owner name in the hash order
///    of the zone.  The complete set of NSEC3 RRs in a zone indicates which
///    RRSets exist for the original owner name of the RR and form a chain
///    of hashed owner names in the zone.  This information is used to
///    provide authenticated denial of existence for DNS data.  To provide
///    protection against zone enumeration, the owner names used in the
///    NSEC3 RR are cryptographic hashes of the original owner name
///    prepended as a single label to the name of the zone.  The NSEC3 RR
///    indicates which hash function is used to construct the hash, which
///    salt is used, and how many iterations of the hash function are
///    performed over the original owner name.  The hashing technique is
///    described fully in Section 5.
///
///    Hashed owner names of unsigned delegations may be excluded from the
///    chain.  An NSEC3 RR whose span covers the hash of an owner name or
///    "next closer" name of an unsigned delegation is referred to as an
///    Opt-Out NSEC3 RR and is indicated by the presence of a flag.
///
///    The owner name for the NSEC3 RR is the base32 encoding of the hashed
///    owner name prepended as a single label to the name of the zone.
///
///    The type value for the NSEC3 RR is 50.
///
///    The NSEC3 RR RDATA format is class independent and is described
///    below.
///
///    The class MUST be the same as the class of the original owner name.
///
///    The NSEC3 RR SHOULD have the same TTL value as the SOA minimum TTL
///    field.  This is in the spirit of negative caching [RFC2308].
///
/// 3.2.  NSEC3 RDATA Wire Format
///
///  The RDATA of the NSEC3 RR is as shown below:
///
///                       1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
///   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///  |   Hash Alg.   |     Flags     |          Iterations           |
///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///  |  Salt Length  |                     Salt                      /
///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///  |  Hash Length  |             Next Hashed Owner Name            /
///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///  /                         Type Bit Maps                         /
///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
///  Hash Algorithm is a single octet.
///
///  Flags field is a single octet, the Opt-Out flag is the least
///  significant bit, as shown below:
///
///   0 1 2 3 4 5 6 7
///  +-+-+-+-+-+-+-+-+
///  |             |O|
///  +-+-+-+-+-+-+-+-+
///
///  Iterations is represented as a 16-bit unsigned integer, with the most
///  significant bit first.
///
///  Salt Length is represented as an unsigned octet.  Salt Length
///  represents the length of the Salt field in octets.  If the value is
///  zero, the following Salt field is omitted.
///
///  Salt, if present, is encoded as a sequence of binary octets.  The
///  length of this field is determined by the preceding Salt Length
///  field.
///
///  Hash Length is represented as an unsigned octet.  Hash Length
///  represents the length of the Next Hashed Owner Name field in octets.
///
///  The next hashed owner name is not base32 encoded, unlike the owner
///  name of the NSEC3 RR.  It is the unmodified binary hash value.  It
///  does not include the name of the containing zone.  The length of this
///  field is determined by the preceding Hash Length field.
/// ```
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct NSEC3{ hash_algorithm: Nsec3HashAlgorithm, opt_out: bool, iterations: u16, salt: Vec<u8>,
  next_hashed_owner_name: Vec<u8>, type_bit_maps: Vec<RecordType>}

impl NSEC3 {
  pub fn new(hash_algorithm: Nsec3HashAlgorithm, opt_out: bool, iterations: u16, salt: Vec<u8>,
    next_hashed_owner_name: Vec<u8>, type_bit_maps: Vec<RecordType>) -> NSEC3 {
      NSEC3{ hash_algorithm: hash_algorithm, opt_out: opt_out, iterations: iterations, salt: salt,
        next_hashed_owner_name: next_hashed_owner_name, type_bit_maps: type_bit_maps }
  }

  /// [RFC 5155, NSEC3, March 2008](https://tools.ietf.org/html/rfc5155#section-3.1.1)
  ///
  /// ```text
  /// 3.1.1.  Hash Algorithm
  ///
  ///    The Hash Algorithm field identifies the cryptographic hash algorithm
  ///    used to construct the hash-value.
  ///
  ///    The values for this field are defined in the NSEC3 hash algorithm
  ///    registry defined in Section 11.
  /// ```
  pub fn get_hash_algorithm(&self) -> Nsec3HashAlgorithm { self.hash_algorithm }

  /// [RFC 5155, NSEC3, March 2008](https://tools.ietf.org/html/rfc5155#section-3.1.2)
  ///
  /// ```text
  /// 3.1.2.  Flags
  ///
  ///    The Flags field contains 8 one-bit flags that can be used to indicate
  ///    different processing.  All undefined flags must be zero.  The only
  ///    flag defined by this specification is the Opt-Out flag.
  ///
  /// 3.1.2.1.  Opt-Out Flag
  ///
  ///    If the Opt-Out flag is set, the NSEC3 record covers zero or more
  ///    unsigned delegations.
  ///
  ///    If the Opt-Out flag is clear, the NSEC3 record covers zero unsigned
  ///    delegations.
  ///
  ///    The Opt-Out Flag indicates whether this NSEC3 RR may cover unsigned
  ///    delegations.  It is the least significant bit in the Flags field.
  ///    See Section 6 for details about the use of this flag.
  /// ```
  pub fn is_opt_out(&self) -> bool { self.opt_out }

  /// [RFC 5155, NSEC3, March 2008](https://tools.ietf.org/html/rfc5155#section-3.1.3)
  ///
  /// ```text
  /// 3.1.3.  Iterations
  ///
  ///    The Iterations field defines the number of additional times the hash
  ///    function has been performed.  More iterations result in greater
  ///    resiliency of the hash value against dictionary attacks, but at a
  ///    higher computational cost for both the server and resolver.  See
  ///    Section 5 for details of the use of this field, and Section 10.3 for
  ///    limitations on the value.
  /// ```
  pub fn get_iterations(&self) -> u16 { self.iterations }

  /// [RFC 5155, NSEC3, March 2008](https://tools.ietf.org/html/rfc5155#section-3.1.5)
  ///
  /// ```text
  /// 3.1.5.  Salt
  ///
  ///    The Salt field is appended to the original owner name before hashing
  ///    in order to defend against pre-calculated dictionary attacks.  See
  ///    Section 5 for details on how the salt is used.
  /// ```
  pub fn get_salt(&self) -> &[u8] { &self.salt }

  /// [RFC 5155, NSEC3, March 2008](https://tools.ietf.org/html/rfc5155#section-3.1.7)
  ///
  /// ```text
  /// 3.1.7.  Next Hashed Owner Name
  ///
  ///  The Next Hashed Owner Name field contains the next hashed owner name
  ///  in hash order.  This value is in binary format.  Given the ordered
  ///  set of all hashed owner names, the Next Hashed Owner Name field
  ///  contains the hash of an owner name that immediately follows the owner
  ///  name of the given NSEC3 RR.  The value of the Next Hashed Owner Name
  ///  field in the last NSEC3 RR in the zone is the same as the hashed
  ///  owner name of the first NSEC3 RR in the zone in hash order.  Note
  ///  that, unlike the owner name of the NSEC3 RR, the value of this field
  ///  does not contain the appended zone name.
  /// ```
  pub fn get_next_hashed_owner_name(&self) -> &[u8] { &self.next_hashed_owner_name }

  /// [RFC 5155, NSEC3, March 2008](https://tools.ietf.org/html/rfc5155#section-3.1.8)
  ///
  /// ```text
  /// 3.1.8.  Type Bit Maps
  ///
  ///  The Type Bit Maps field identifies the RRSet types that exist at the
  ///  original owner name of the NSEC3 RR.
  /// ```
  pub fn get_type_bit_maps(&self) -> &[RecordType] { &self.type_bit_maps }
}

pub fn read(decoder: &mut BinDecoder, rdata_length: u16) -> DecodeResult<NSEC3> {
  let start_idx = decoder.index();

  let hash_algorithm = try!(Nsec3HashAlgorithm::from_u8(try!(decoder.read_u8())));
  let flags: u8 = try!(decoder.read_u8());

  if flags & 0b1111_1110 != 0 { return Err(DecodeError::UnrecognizedNsec3Flags(flags)) }
  let opt_out: bool = flags & 0b0000_0001 == 0b0000_0001;
  let iterations: u16 = try!(decoder.read_u16());
  let salt_len: u8 = try!(decoder.read_u8());
  let salt: Vec<u8> = try!(decoder.read_vec(salt_len as usize));
  let hash_len: u8 = try!(decoder.read_u8());
  let next_hashed_owner_name: Vec<u8> = try!(decoder.read_vec(hash_len as usize));

  let bit_map_len = rdata_length as usize - (decoder.index() - start_idx);
  let record_types = try!(decode_type_bit_maps(decoder, bit_map_len));

  Ok(NSEC3::new(hash_algorithm, opt_out, iterations, salt, next_hashed_owner_name, record_types))
}

pub fn decode_type_bit_maps(decoder: &mut BinDecoder, bit_map_len: usize) -> DecodeResult<Vec<RecordType>> {
  // 3.2.1.  Type Bit Maps Encoding
  //
  //  The encoding of the Type Bit Maps field is the same as that used by
  //  the NSEC RR, described in [RFC4034].  It is explained and clarified
  //  here for clarity.
  //
  //  The RR type space is split into 256 window blocks, each representing
  //  the low-order 8 bits of the 16-bit RR type space.  Each block that
  //  has at least one active RR type is encoded using a single octet
  //  window number (from 0 to 255), a single octet bitmap length (from 1
  //  to 32) indicating the number of octets used for the bitmap of the
  //  window block, and up to 32 octets (256 bits) of bitmap.
  //
  //  Blocks are present in the NSEC3 RR RDATA in increasing numerical
  //  order.
  //
  //     Type Bit Maps Field = ( Window Block # | Bitmap Length | Bitmap )+
  //
  //     where "|" denotes concatenation.
  //
  //  Each bitmap encodes the low-order 8 bits of RR types within the
  //  window block, in network bit order.  The first bit is bit 0.  For
  //  window block 0, bit 1 corresponds to RR type 1 (A), bit 2 corresponds
  //  to RR type 2 (NS), and so forth.  For window block 1, bit 1
  //  corresponds to RR type 257, bit 2 to RR type 258.  If a bit is set to
  //  1, it indicates that an RRSet of that type is present for the
  //  original owner name of the NSEC3 RR.  If a bit is set to 0, it
  //  indicates that no RRSet of that type is present for the original
  //  owner name of the NSEC3 RR.
  //
  //  Since bit 0 in window block 0 refers to the non-existing RR type 0,
  //  it MUST be set to 0.  After verification, the validator MUST ignore
  //  the value of bit 0 in window block 0.
  //
  //  Bits representing Meta-TYPEs or QTYPEs as specified in Section 3.1 of
  //  [RFC2929] or within the range reserved for assignment only to QTYPEs
  //  and Meta-TYPEs MUST be set to 0, since they do not appear in zone
  //  data.  If encountered, they must be ignored upon reading.
  //
  //  Blocks with no types present MUST NOT be included.  Trailing zero
  //  octets in the bitmap MUST be omitted.  The length of the bitmap of
  //  each block is determined by the type code with the largest numerical
  //  value, within that block, among the set of RR types present at the
  //  original owner name of the NSEC3 RR.  Trailing octets not specified
  //  MUST be interpreted as zero octets.
  let mut record_types: Vec<RecordType> = Vec::new();
  let mut state: BitMapState = BitMapState::ReadWindow;

  // loop through all the bytes in the bitmap
  for _ in 0..bit_map_len {
    let current_byte = try!(decoder.read_u8());

    state = match state {
      BitMapState::ReadWindow => BitMapState::ReadLen{ window: current_byte },
      BitMapState::ReadLen{ window } => BitMapState::ReadType{ window: window, len: current_byte, left: current_byte },
      BitMapState::ReadType{ window, len, left } => {
        // window is the Window Block # from above
        // len is the Bitmap Length
        // current_byte is the Bitmap
        let mut bit_map = current_byte;

        // for all the bits in the current_byte
        for i in 0..8 {
          // if the current_bytes most significant bit is set
          if bit_map & 0b1000_0000 == 0b1000_0000 {
            // len - left is the block in the bitmap, times 8 for the bits, + the bit in the current_byte
            let low_byte = ((len - left) * 8) + i;
            let rr_type: u16 = (window as u16) << 8 | low_byte as u16;
            record_types.push(try!(RecordType::from_u16(rr_type)));
          }
          // shift left and look at the next bit
          bit_map <<= 1;
        }

        // move to the next section of the bit_map
        let left = left - 1;
        if left == 0 {
          // we've exhausted this Window, move to the next
          BitMapState::ReadWindow
        } else {
          // continue reading this Window
          BitMapState::ReadType { window: window, len: len, left: left }
        }
      },
    };
  }

  Ok(record_types)
}

enum BitMapState {
  ReadWindow,
  ReadLen{ window: u8 },
  ReadType{ window: u8, len: u8, left: u8 },
}

pub fn emit(encoder: &mut BinEncoder, rdata: &NSEC3) -> EncodeResult {
  try!(encoder.emit(rdata.get_hash_algorithm().into()));
  let mut flags: u8 = 0;
  if rdata.is_opt_out() { flags |= 0b0000_0001 };
  try!(encoder.emit(flags));
  try!(encoder.emit_u16(rdata.get_iterations()));
  try!(encoder.emit(rdata.get_salt().len() as u8));
  try!(encoder.emit_vec(rdata.get_salt()));
  try!(encoder.emit(rdata.get_next_hashed_owner_name().len() as u8));
  try!(encoder.emit_vec(rdata.get_next_hashed_owner_name()));
  try!(encode_bit_maps(encoder, rdata.get_type_bit_maps()));

  Ok(())
}

pub fn encode_bit_maps(encoder: &mut BinEncoder, type_bit_maps: &[RecordType]) -> EncodeResult {
  let mut hash: HashMap<u8, Vec<u8>> = HashMap::new();

  // collect the bitmaps
  for rr_type in type_bit_maps {
    let code: u16 = (*rr_type).into();
    let window: u8 = (code >> 8) as u8;
    let low: u8 = (code & 0x00FF) as u8;

    let bit_map: &mut Vec<u8> = hash.entry(window).or_insert(Vec::new());
    // len + left is the block in the bitmap, divided by 8 for the bits, + the bit in the current_byte
    let index: u8 = low / 8;
    let bit: u8 = 0b1000_0000 >> (low % 8);

    for _ in 0..((index as usize + 1) - bit_map.len()) {
      bit_map.push(0);
    }

    bit_map[index as usize] |= bit;
  }

  // output bitmaps
  for (window, bitmap) in hash {
    try!(encoder.emit(window));
    // the hashset should never be larger that 255 based on above logic.
    try!(encoder.emit(bitmap.len() as u8));
    for bits in bitmap {
      try!(encoder.emit(bits));
    }
  }

  Ok(())
}

#[test]
pub fn test() {
  let rdata = NSEC3::new(Nsec3HashAlgorithm::SHA1, true, 2, vec![1,2,3,4,5], vec![6,7,8,9,0],
                   vec![RecordType::A, RecordType::AAAA, RecordType::DS, RecordType::RRSIG]);

  let mut bytes = Vec::new();
  let mut encoder: BinEncoder = BinEncoder::new(&mut bytes);
  assert!(emit(&mut encoder, &rdata).is_ok());
  let bytes = encoder.as_bytes();

  println!("bytes: {:?}", bytes);

  let mut decoder: BinDecoder = BinDecoder::new(bytes);
  let read_rdata = read(&mut decoder, bytes.len() as u16);
  assert!(read_rdata.is_ok(), format!("error decoding: {:?}", read_rdata.unwrap_err()));
  assert_eq!(rdata, read_rdata.unwrap());
}